Принцип действия стартера
На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).
Рис. 1 Функциональная схема подключения ЛДС
Фазы запуска ЛДС следующие: 1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться. 2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа. 3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления. Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.
Что такое дроссель и для чего он нужен?
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.
Конструкция и принцип работы
Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:
Внешний вид изделия может быть таким, как на фото:
Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.
Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике.
Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление.
Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.
Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.
Интересное пояснение по данному вопросу вы также можете просмотреть на видео:
Наглядное сравнение, объясняющее принцип работыТеоретическая часть вопроса
Область применения
Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.
Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:
Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь.
В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение.
Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.
В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.
Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.
В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.
С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.
Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.
Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!
Будет интересно прочитать:
Как устроена и работает ЛДС
Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.
Схема люминесцентной лампы
Все это ЛДС, работающие на одном принципе.
Для нормальной работы люминесцентного светильника необходимо выполнить два условия:
- Обеспечить начальный пробой межэлектродного промежутка (запуск).
- Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).
Пуск лампы
В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.
До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.
Стартеры для пуска ЛДС на различные напряжения
Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.
Поддержание рабочего режима
Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:
- Электромагнитные (дроссельные).
- Электронные.
Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.
Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.
Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:
Электронное пускорегулирующее устройство для люминесцентной лампы
Особенности экономки
Лампа дневного света представляет собой газоразрядное устройство, которое является более усовершенствованной лампочкой накаливания. В связи с этим в ее конструкции должен быть элемент, выполняющий роль ограничителя тока. Эту роль и выполняет дроссель (балласт). Без него сила тока в электроцепи будет нарастать лавинообразно, а это приведет к поломке лампы.
Дроссель в лампе дневного света является балластом и поглощает лишнюю мощность, имеющуюся в электроцепи. В источнике свечения с мощностью в 36-40 Вт он забирается примерно 15 % или 6 Вт. Дроссель в люминесцентных моделях выполняет следующие функции:
- осуществляет прогрев катодов. Благодаря этому они подготавливаются в эмиссии электродов;
- создает необходимо для стартового разряда напряжение;
- выступает в роли ограничителя тока, который течет через электрическую систему после запуска лампы.
Чтобы балласт (электронный или электромагнитный) мог выполнять свои прямые обязанности, нужна правильная схема подключения. Если в ней будет допущена хотя бы одна ошибка, то свечение люминесцентных ламп не произойдет. Схема подключения лампы дневного света может иметь различный вид. Она зависит от следующих параметров:
- тип балласта (электронный или электромагнитный):
- количество ограничителей тока;
- тип и количество люминесцентных ламп (к одной, двум) и т. д.
Все эти параметры оказывают влияние на то, как будет выглядеть схема подключения балласта к электроцепи источника света. Каждая такая схема не очень сложная и ее можно использовать для подключения даже при отсутствии глубоких познаний в электротехнике. Рассмотрим несколько наиболее востребованных вариантов подключения.
Дроссели и их назначение при использовании люминесцентных ламп
Дроссель — деталь, служащая для регулировки силы тока. Эта деталь разделяет или ограничивает электросигналы различной частоты и устраняет пульсацию постоянного тока.
Для чего и зачем нужен в устройствах дневного света
Люминесцентные лампы (дневного света) как один из видов разрядных ламп, невозможно подключить для освещения таким же образом, как и обычную нагревательную электролампу. Для их подключения необходимо использовать дополнительный пускорегулирующий аппарат.
Дроссель включается методом последовательного соединения с лампой дневного света и предназначается для ограничения тока, который протекает через ее электроды. Это устройство характеризуется наличием реактивного сопротивления, а также отсутствием излишнего тепловыделения. Дроссель может ограничить ток и организовать предотвращение его лавинообразного нарастания при включении в сеть.
Дроссель — неотъемлемая составная часть любой стартерной системы включения. Помимо этого, он способен исполнять следующие дополнительные функции:
- создание безопасного тока для конкретной лампы, при котором возможно обеспечение разогрева ее электродов при разжигании;
- образование импульса повышенного напряжения, способствующего возникновению разряда в колбе лампы;
- обеспечение стабилизации электрического разряда;
- способствование бесперебойной работы лампы при отклонениях напряжения в электрической сети.
Технические характеристики
Основными техническими характеристиками рассматриваемой детали являются коэффициент потери мощности и индуктивность. Для обозначения этого коэффициента на устройстве указываются параметры тока, мощности и емкости конденсатора.
Индуктивностью называется индуктивное сопротивление, которое представляет возможным регулировать мощность электричества, поступающего на ламповые контакты.
Виды
Дроссели делятся на те же виды, что и подключаемые к ним лампы. Если подключить лампу к дросселю, который не соответствует ее характеристикам, то это, вероятнее всего, приведет к поломке какого-либо из элементов, используемых в системе подключения. Существуют следующие виды дросселей, подразделяемых в зависимости от мощности:
- дроссель мощностью в 9 Вт — для энергосберегающих ламп;
- 11 Вт — для миниатюрных светильников;
- 15 Вт — для настольных светильников;
- 18 Вт — для офисных ламп;
- 36 Вт — для малых люминесцентных ламп;
- 58 Вт — для потолочных светильников;
- 65 Вт — для многоламповых потолочных светильников;
- 80 Вт — для большых люминесцентных ламп.
Устройство
Типичная схема подключения дросселя газоразрядного типа представлена на рисунке ниже.
Условные обозначения:
- EL — лампа;
- SF — стартер;
- LL — дроссель;
- 1, 2 — спирали лампы;
- C — конденсатор.
Отчего может греться
Дроссели чаще всего изготавливают из двух металлических материалов — алюминия и меди. Алюминиевые устройства обладают одним существенным недостатком — сильным нагреванием. В свою очередь, медные греются меньше из-за меньшего сопротивления в электрической цепи, и поэтому они являются гораздо более долговечными.
При использовании ламп дневного света дроссель должен постоянно поддерживать свою рабочую температуру. Для снижения температуры достаточно использовать простой компьютерный кулер. Однако, существует возможность выбрать и другой путь, заключающийся в покупке более дорогой системы охлаждения, например, водяной.
Помимо самой работы дросселя, он также способен перегреваться из-за короткозамкнутых витков. При такой проблеме помочь может только полная замена устройства. При замене рекомендуется выбрать детали из меди, основываясь на том, что они менее подвержены перегреву.
Практика показывает, что дроссели являются весьма долговечными устройствами при правильной их эксплуатации. А также нельзя не отметить тот факт, что дроссель способен погашать броски напряжения, даже очень сильные. Поэтому, если вы правильно подберете дроссель к своей люминесцентной лампе, то эта лампа может прослужить вам годами, и даже десятилетиями.
15,00
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Watch this video on YouTube
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:
- длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
- большие искажения формы напряжения питающей сети (cosф<0.5);
- мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
- большие массо-габаритные характеристики;
- низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
- низкая надежность запуска при отрицательных температурах.
Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.
Watch this video on YouTube
Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:
- с предварительным подогревом электродов;
- с холодным запуском.
В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.
Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).
Схемы с электронным дросселем имеют такие преимущества:
полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.
Разнообразие дросселей по мощности в ваттах
Различают дроссели малой, средней и большой мощности. Первые (мощностью до 11…15 Вт) используются в миниатюрных и энергосберегающих светильниках, вторые (до 30…40 Вт) – в офисных лампах, а более мощные – для освещения залов, гостиных, холлов и прочих помещений значительной площади.
Различие по условиям пуска
Например, для люминесцентных ламп мощностью до 40 Вт самым распространённым режимом работы является режим быстрого запуска. Преимущества быстрого запуска заключаются в плавном нарастании напряжения, увеличении срока службы и возможности диммирования – плавного изменения яркости испускаемого светового потока.
Для ламп меньшей мощности (менее 30 Вт) характерен режим предварительного нагрева. Источники света, работающие в этом режиме, лучше, поскольку для непрерывного нагрева электродов не требуется дополнительная мощность. Однако такие лампы мерцают во время запуска и характеризуются коротким сроком службы.
Питание от 220В без дросселя и стартера
Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают. Всё это стоит не дешево, поэтому есть несколько схем для подключения светильника без этих элементов. Одну из них вы видите на рисунке ниже.
Диоды можно выбирать любые с обратным напряжением не менее 1000В и током не меньше чем потребляет светильник (от 0,5 А). Конденсаторы выбирайте с таким же напряжением в 1000В и ёмкостью 1-2 мкФ
Обратите внимание, что в этой схеме включения выводы лампы замкнуты между собой. Это значит, что спирали в процессе зажигания не участвуют и можно использовать схему для розжига ламп, где они перегорели
Такую схему можно использовать для освещения подсобных помещений и коридоров. В гараже можно применять, если в нём вы не работаете на станках. Светоотдача может быть ниже, чем при классическом подключении, а световой поток будет мерцать, хоть это и не всегда заметно для человеческого глаза. Но такое освещение может вызвать стробоскопический эффект — когда вращающиеся части могут казаться неподвижными. Соответственно это может привести к несчастным случаям.
Рекомендуем: Схема отопления частного дома с газовым котлом — подключение настенного котла своими руками
Примечание: во время экспериментов учтите, что запуск люминесцентных источников света в холодное время года всегда осложнен.
На видео ниже наглядно показано, как запустить люминесцентную лампу, используя диоды и конденсаторы:
Есть еще одна схема подключения люминесцентной лампы без стартера и дросселя. В качестве балласта при этом используется лампочка накаливания.
Лампу накаливания использовать на 40-60 Вт, как показано на фото:
Альтернативой описанным способам является использование платы от энергосберегающих ламп. Фактически это тот же ЭПРА, что используется с трубчатыми аналогами, но в миниатюрном формате.
На видео ниже наглядно показано, как подключить люминесцентную лампу через плату энергосберегающей лампы:
2
Подключение с электромагнитным балластом – классическая схема
Первые лампы дневного света включались через дроссель и стартер. Раньше это были отдельные устройства (в некоторых моделях так и сейчас) с гнездами в корпусе светильника для каждого. Схема также имеет 2 конденсатора. Один размещен в стартере – продлевает импульс, второй стабилизирует напряжение. Все оборудование называют электромагнитным балластом.
Этот тип подключения имеет несколько преимуществ:
прошел испытание временем и подтвердил надежность;простой;комплектующие недорогие по стоимости.
Практическое применение выявило многие недостатки, особенно по сравнению с электронной схемой подключения ЛДС:
потребляет на 15%!б(MISSING)ольше электричества;тяжелый осветительный прибор;долго включается, особенно когда стареет лампа;плохо работает на холоде;гудит дроссель, звук нарастает со временем;мерцает свет, что плохо сказывается на зрении.Схема для одной лампы
При монтаже вначале вставляют в гнездо стартер для соединения с нитями накаливания в колбе. К свободным контактам подключают дроссель. На сетевые провода параллельно устанавливают конденсатор.
Назначение дросселя
Принципиальные схемы электронных балластов разные. Но все они поддерживают фактическую типовую структурную схему:
- Сначала подключается последовательный резистор. Он подключен для ограничения тока перегрузки и короткого замыкания. В некоторых электронных балластах вместо последовательного резистора используется предохранитель. Этот резистор имеет очень низкое значение до 22 Ом.
- Затем подключается схема фильтра электромагнитных помех, который состоит из одного последовательного индуктора и одного параллельного конденсатора.
- Затем используется выпрямительная схема для преобразования переменного тока в постоянный. Схема мостового выпрямителя состоит из четырех PN диодов.
- Конденсатор подключен параллельно для фильтрации постоянного тока, поступающего из выпрямительной цепи.
Вам это будет интересно Как утилизировать лампы
Применяется инверторная схема с использованием двух транзисторов. Эти транзисторы создают высокочастотный переменный ток и повышающий трансформатор. С частотой в электронном балласте от 20.0 кГц до 8.00 кГц. Как правило, транзистор создает прямоугольный токовый сигнал. Повышающий трансформатор повышает уровень напряжения до 1000.0 В. В начальный момент и после того, как лампочка накаливания загорается, напряжение на ней снижается до 230 В. Таким образом главное назначение дросселя в люминесцентной лампе — сдерживать ток при работе осветительного прибора.
Схема подключения люминесцентных ламп с дросселем
Электромагнитные пусковые устройства имеют стартер и дроссель. Также устанавливаются конденсаторы. На дросселе, параллельно клеммам подключения сети ставится конденсатор, необходимый для компенсации индуктивной мощности дросселя и для уменьшения электромагнитных помех.
Наглядный пример принципа работы люминесцентной лампы
Конденсатор, устанавливаемый на стартере, необходим для увеличения времени стартового импульса. Иногда это устройство еще называют электронным балластом. На схеме видно, что при включении сети ток проходит через дроссель и попадает на накал катода. На второй накал ток поступает через стартер и далее на ноль.
В момент подачи напряжения на стартер, между разомкнутыми биметаллическими контактами возникает тлеющий разряд, который нагревает контакты. Разогревшись, контакты стартера замыкаются, и ток поступает на оба накала лампы. После окончания действия тактового импульса напряжения с конденсатора, биметаллические контакты стартера остывают и размыкаются.
Дроссель для подключения люминесцентной лампы
В момент размыкания контактов стартера возникает бросок напряжения, из-за действия самоиндукции дросселя. Этого броска напряжения хватает для того чтобы зажечь пары ртути через разогретый накал лампы. Свечение паров ртути находится в ультрафиолетовом, невидимом диапазоне световых волн.
Схема подключения люминесцентной лампы
Однако свечение паров ртути зажигает люминофор с видимым спектром светового излучения. После того как лампа загорелась, напряжение питания лампы уменьшается наполовину от напряжения сети (делитель дроссель – лампа) чего не хватает для повторного разогрева контактов стартера и замыкания контактов.
К недостаткам схемы подключения люминесцентных ламп с дросселем можно отнести.
- Негативный для глаз пульсирующий свет 50 Гц.
- Шумность при работе и пуске дневных ламп.
- Тяжелый пуск при низкой температуре.
- Большое время включение этих ламп.
Иногда в светильниках подключается две лампы дневного освещения на один дроссель. В этом случае нужно соблюдать правила.
Схема подключения двух люминесцентных ламп
- Мощность дросселя должна соответствовать мощности двух ламп.
- Стартеры для этой схемы подключения люминесцентных ламп должны быть на 127 В. Стартер на 220 вольт в этой схеме не работает.
Характеристики
Базовые функции балластов: обеспечивает процесс подогрева катодов для старта процесса электронной эмиссии, создает напряжение стартового разряда и последующее ограничение рабочего тока. В режиме переменного тока, он обеспечивает сдвиг фаз (cos f) между I и U, называемым коэффициент мощности. Эта величина обозначается в паспорте и маркировки балласта. Активная мощность рассчитывается по соотношению: P = U х I х cosf, очевидно, что низкий cos f дает рост использования реактивной энергии.
Маркировка балласта
В связи, с чем балласты группируются по уровню мощности:
- С— низкий показатель;
- В— супернизкий;
- D — средняя возможность поглощения.
Классификация и по уровню шума:
- С — очень низкий шумовой эффект;
- А — особо низкий показатель;
- П — пониженный шум;
- Н — норма.
Технические характеристики балласта должны соответствовать показателям мощности лампы, иначе она работать не будет.
Люминесцентные ламы требуют установку дросселей различной мощности:
- Вт до 15.0 Вт — небольшие настольные светильники;
- 16.0 Вт до 36.0 Вт — потолочные и настенные бытовые осветительные устройства;
- 37.0 Вт до 80.0 Вт — мощные промышленные осветительные системы с несколькими единичными точками света.
На территории России выпуск люминесцентных ламп и комплектующих производятся достаточно большими партиями — от миллиона ламп в год. Производство организовано на предприятиях: «ЛИСМА-ВНИИС» им. Лодыгина, «Фотон», Саранский завод точных приборов, . Среди западных производителей популярностью пользуются греческая компания Schwabe Hellas и финская Helvar. Считается, что балласты и стартеры лучше приобретать известных марок, таких как Navigator или Luxe.
Как подключить лампу
Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.
Подключение с использованием электромагнитного балласта
Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.
Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.
Подключение при помощи ЭмПРА.
Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:
- значительный расход электроэнергии;
- длительный запуск, который может занимать 3 с;
- схема не способна функционировать в условиях пониженных температур;
- нежелательное стробоскопическое мигание, негативно влияющее на зрение;
- дроссельные пластинки по мере износа могут издавать гудение.
Две трубки и два дросселя
В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.
Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.
Схема с двумя трубками и двумя дросселями.
От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.
Схема подключения двух ламп от одного дросселя
Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.
Схема подключения двух светильников от одного дросселя.
Электронный балласт
Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.
Поступающий на нагрузку ток выпрямляется через диодный мост. При этом напряжение сглаживается, а конденсаторы гарантируют стабильную подачу электроэнергии.
Подключение с помощью электронного балласта.
Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.
Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.
Использование умножителей напряжения
Использование умножителей напряжения.
Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.
Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.
Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость
Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.
Подключение без стартера
Схема подключения без стартера.
Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.